A review on the complementarity between grid-connected solar
The study has shown several results for different areas of the country and has concluded that assessing synergy characteristics of solar and wind are crucial in deciding
Eberhard, A. et al. Accelerating investments in power in sub-Saharan Africa. Nat. Energy 2, 1–5 (2017). Lu, T. et al. India's potential for integrating solar and on-and offshore wind power into its energy system.
We find that PV power plants are optimally distributed in South and East Asia at a latitude of 20–40°N with total power generation of 14 PWh y -1 and an average LCOE of $0.089 per kWh by accounting for the spatial distributions of solar radiation, land occupation, clouds, land cover, power demand, and capital costs (Fig. 2c).
A study by Viviescas et al. determined that high wind speeds during nighttime make areas from the northeastern coast of Brazil exhibit the largest solar-wind complementarity, confirming the findings of this paper.
Han et al. have proposed a complementarity evaluation method for wind, solar, and hydropower by examining independent and combined power generation fluctuation. Hydropower is the primary source, while wind and solar participation are changed in each scenario to improve power system operation.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed specifications, case studies, and technical data sheets for our ESS containers and containerized PV systems.
15 Rue des Énergies Renouvelables
Paris 75015, France
+33 1 84 83 72 76
Monday - Friday: 8:30 AM - 6:30 PM CET